Garibaldi, L. A. et al. Services from Plant – Pollinator interactions in the Neotropics. In Rapidel, B., DeClerck, F., Le Coq, J. & Beer, J. (eds.) Ecosystem services from agriculture and agroforestry: measurement and payment, 119–139 (Earthscan, London, UK, 2011).
Food and Agriculture Organization of the United Nations. Pollination of cultivated plants in the Tropics, Issue 118 (Food & Agriculture Org., 1995).
Kevan, P. G. & Baker, H. G. Insects as flower visitors and pollinators. Annual Review of Entomology28, 407–453 (1983).
Google Scholar
Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. Trends in Ecology & Evolution25, 345–353 (2010).
Google Scholar
Winfree, R., Aguilar, R., Vázquez, D. P., Lebuhn, G. & Aizen, M. A. A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology90, 2068–2076 (2009).
Google Scholar
Klein, A.-M. et al. Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences274, 303–313 (2007).
Google Scholar
Garratt, M. et al. Avoiding a bad apple: Insect pollination enhances fruit quality and economic value. Agriculture, Ecosystems & Environment184, 34–40 (2014).
Google Scholar
Richards, A. Does low biodiversity resulting from modern agricultural practice affect crop pollination and yield? Annals of Botany88, 165–172 (2001).
Google Scholar
Kevan, P. G. & Phillips, T. P. The economic impacts of pollinator declines: An approach to assessing the consequences. Conservation Ecology5, 8 (2001).
Google Scholar
Kennedy, C. M. et al. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecology Letters16, 584–599 (2013).
Google Scholar
Archer, C. R., Pirk, C. W. W., Carvalheiro, L. G. & Nicolson, S. W. Economic and ecological implications of geographic bias in pollinator ecology in the light of pollinator declines. Oikos123, 401–407 (2014).
Google Scholar
Mayer, C. et al. Pollination ecology in the 21st Century: Key questions for future research. Journal of Pollination Ecology3, 8–23 (2011).
Google Scholar
Gallai, N., Salles, J.-M., Settele, J. & Vaissière, B. E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecological Economics68, 810–821 (2009).
Google Scholar
Mora, C. et al. The projected timing of climate departure from recent variability. Nature502, 183–187 (2013).
Google Scholar
Fritz, S. A., Bininda-Emonds, O. R. P. & Purvis, A. Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics. Ecology Letters12, 538–549 (2009).
Google Scholar
Balmford, A. Extinction filters and current resilience: the significance of past selection pressures for conservation biology. Trends in Ecology & Evolution11, 193–196 (1996).
Google Scholar
Ollerton, J., Erenler, H., Edwards, M. & Crockett, R. Extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes. Science346, 1360–1362 (2014).
Google Scholar
Kuussaari, M. et al. Extinction debt: a challenge for biodiversity conservation. Trends in Ecology & Evolution24, 564–571 (2009).
Google Scholar
Dullinger, S. et al. Europe’s other debt crisis caused by the long legacy of future extinctions. Proceedings of the National Academy of Sciences of the United States of America110, 7342–7347 (2013).
Google Scholar
Williams, N. M. et al. Ecological and life-history traits predict bee species responses to environmental disturbances. Biological Conservation143, 2280–2291 (2010).
Google Scholar
Rader, R., Bartomeus, I., Tylianakis, J. M. & Laliberté, E. The winners and losers of land use intensification: pollinator community disassembly is non-random and alters functional diversity. Diversity and Distributions20, 908–917 (2014).
Google Scholar
De Palma, A. et al. Ecological traits affect the sensitivity of bees to land-use pressures in European agricultural landscapes. Journal of Applied Ecology52, 1567–1577 (2015).
Google Scholar
Moretti, M., De Bello, F., Roberts, S. P. M. & Potts, S. G. Taxonomical vs. functional responses of bee communities to fire in two contrasting climatic regions. Journal of Animal Ecology78, 98–108 (2009).
Google Scholar
Colla, S. R. & Packer, L. Evidence for decline in eastern North American bumblebees (Hymenoptera: Apidae), with special focus on Bombus affinis Cresson. Biodiversity and Conservation17, 1379–1391 (2008).
Google Scholar
Bartomeus, I. et al. Historical changes in northeastern US bee pollinators related to shared ecological traits. Proceedings of the National Academy of Sciences of the United States of America110, 4656–60 (2013).
Google Scholar
Williams, P., Colla, S. & Xie, Z. Bumblebee vulnerability: Common correlates of winners and losers across three continents. Conservation Biology23, 931–940 (2009).
Google Scholar
Carvalheiro, L. G. et al. Species richness declines and biotic homogenisation have slowed down for NW-European pollinators and plants. Ecology Letters16, 870–878 (2013).
Google Scholar
Hudson, L. N. et al. The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts. Ecology and Evolution4, 4701–4735 (2014).
Google Scholar
Wood, S. & Scheipl, F. gamm4: Generalized additive mixed models using mgcv and lme4. URL http://CRAN.R-project.org/package=gamm4. (2014).
Magurran, A. E. Measuring biological diversity. (Blackwell Science Ltd, Oxford, UK, 2004).
Harrison, X. A. Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ2, e616 (2014).
Google Scholar
R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/ (2014).
Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear mixed-effects models using Eigen and S4. URL http://CRAN.R-project.org/package=lme4 (2014).
Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. No. iii in Statistics for Biology and Health (Springer New York, New York, NY, 2009).
Crawley, M. J. The R book (John Wiley & Sons Ltd, Chichester, 2007).
Murtaugh, P. A. Performance of several variable-selection methods applied to real ecological data. Ecology Letters12, 1061–1068 (2009).
Google Scholar
Fox, J. & Weisberg, S. An R Companion to Applied Regression. (Sage, Thousand Oaks, CA, USA, 2011).
Whittingham, M. J., Stephens, P. A., Bradbury, R. B. & Freckleton, R. P. Why do we still use stepwise modelling in ecology and behaviour? Journal of Animal Ecology75, 1182–1189 (2006).
Google Scholar
Barton, K. MuMIn: Multi-model inference. URL http://CRAN.R-project.org/package=MuMIn (2013).
Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution4, 133–142 (2013).
Google Scholar
Rodríguez, J. D., Pérez, A. & Lozano, J. A. Sensitivity analysis of kappa-fold cross validation in prediction error estimation. IEEE transactions on pattern analysis and machine intelligence32, 569–575 (2010).
Google Scholar
Wang, W. & Gelman, A. Difficulty of selecting among multilevel models using predictive accuracy. Statistics and Its Interface8, 153–512 (1981).
Google Scholar
Sheiner, L. B. & Beal, S. L. Some suggestions for measuring predictive performance. Journal of Pharmacokinetics and Biopharmaceutics9, 503–160 (1981).
Google Scholar
Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometrical Journal50, 346–363 (2008).
Google Scholar
Benjamin, Y. & Hochberg, Y. Controlling the False Discovery Rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B (Methodological)57, 289–300 (1995).
Google Scholar
Pike, N. Using false discovery rates for multiple comparisons in ecology and evolution. Methods in Ecology and Evolution2, 278–282 (2011).
Google Scholar
Bivand, R. & Piras, G. Comparing implementations of estimation methods for spatial econometrics. Journal of Statistical Software63, 1–36 (2015).
Bivand, R. S., Hauke, J. & Kossowski, T. Computing the Jacobian in Gaussian spatial autoregressive models: An illustrated comparison of available methods. Geographical Analysis45, 150–179 (2013).
Google Scholar
Roulston, T. H. & Goodell, K. The role of resources and risks in regulating wild bee populations. Annual review of entomology56, 293–312 (2011).
Google Scholar
Petchey, O. L. et al. The ecological forecast horizon, and examples of its uses and determinants. Ecology Letters18, 597–611 (2015).
Google Scholar
Lautenbach, S., Seppelt, R., Liebscher, J. & Dormann, C. F. Spatial and temporal trends of global pollination benefit. PLoS ONE7, e35954 (2012).
Google Scholar
Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature478, 378–381 (2011).
Google Scholar
Hernandez, J. L., Frankie, G. W. & Thorp, R. W. Ecology of urban bees: A review of current knowledge and directions for future study. Cities and the Environment2, 1–15 (2009).
Google Scholar
Westphal, C., Steffan-Dewenter, I. & Tscharntke, T. Mass flowering oilseed rape improves early colony growth but not sexual reproduction of bumblebees. Journal of Applied Ecology46, 187–193 (2009).
Google Scholar
Schreinemachers, P. & Tipraqsa, P. Agricultural pesticides and land use intensification in high, middle and low income countries. Food Policy37, 616–626 (2012).
Google Scholar
Powney, G. D., Preston, C. D., Purvis, A., Van Landuyt, W. & Roy, D. B. Can trait-based analyses of changes in species distribution be transferred to new geographic areas? Global Ecology and Biogeography23, 1009–1018 (2014).
Google Scholar
Roubik, D. W. Ecology and Natural History of tropical bees (Cambridge University Press, Cambridge, 1992).
Brown, M. J. F. & Paxton, R. J. The conservation of bees: a global perspective. Apidologie40, 410–416 (2009).
Google Scholar
Freitas, B. M. et al. Diversity, threats and conservation of native bees in the Neotropics. Apidologie40, 332–346 (2009).
Google Scholar
Ollerton, J., Johnson, S. D. & Hingston, A. B. Geographic variation in diversity and specificity of pollination systems. 283–308 In Waser, N. M. & Ollerton, J. (eds.) Plant-Pollinator Interactions: from Specialization to Generalization. (University of Chicago Press, Chicago, USA, 2006).
Hillebrand, H. On the generality of the latitudinal diversity gradient. The American Naturalist163, 192–211 (2004).
Google Scholar
Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science339, 1608–1611 (2013).
Google Scholar
Winfree, R., Fox, J. W., Williams, N. M., Reilly, J. R. & Cariveau, D. P. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecology Letters18, 626–635 (2015).
Google Scholar
Vergara, C. H. & Badano, E. I. Pollinator diversity increases fruit production in Mexican coffee plantations: The importance of rustic management systems. Agriculture, Ecosystems & Environment129, 117–123 (2009).
Google Scholar
Hoehn, P., Tscharntke, T., Tylianakis, J. M. & Steffan-Dewenter, I. Functional group diversity of bee pollinators increases crop yield. Proceedings of the Royal Society B: Biological Sciences275, 2283–2291 (2008).
Google Scholar
Rogers, S. R., Tarpy, D. R. & Burrack, H. J. Bee species diversity enhances productivity and stability in a perennial crop. PLoS ONE9, e97307 (2014).
Google Scholar
Basset, Y. et al. Changes in arthropod assemblages along a wide gradient of disturbance in Gabon. Conservation Biology22, 1552–1563 (2008).
Google Scholar
Gaigher, R. & Samways, M. J. Surface-active arthropods in organic vineyards, integrated vineyards and natural habitat in the Cape Floristic Region. Journal of Insect Conservation14, 595–605 (2010).
Google Scholar
Grass, I., Berens, D. G., Peter, F. & Farwig, N. Additive effects of exotic plant abundance and land-use intensity on plant-pollinator interactions. Oecologia173, 913–923 (2013).
Google Scholar
Blanche, K. R., Ludwig, J. A. & Cunningham, S. A. Proximity to rainforest enhances pollination and fruit set in orchards. Journal of Applied Ecology43, 1182–1187 (2006).
Google Scholar
Cunningham, S. A., Schellhorn, N. A., Marcora, A. & Batley, M. Movement and phenology of bees in a subtropical Australian agricultural landscape. Austral Ecology38, 456–464 (2013).
Google Scholar
Lentini, P. E., Martin, T. G., Gibbons, P., Fischer, J. & Cunningham, S. A. Supporting wild pollinators in a temperate agricultural landscape: Maintaining mosaics of natural features and production. Biological Conservation149, 84–92 (2012).
Google Scholar
Kessler, M. et al. Alpha and beta diversity of plants and animals along a tropical land-use gradient. Ecological Applications19, 2142–2156 (2009).
Google Scholar
Malone, L. et al. Observations on bee species visiting white clover in New Zealand pastures. Journal of Apicultural Research49, 284–286 (2010).
Google Scholar
Todd, J. H. et al. Invertebrate community richness in New Zealand kiwifruit orchards under organic or integrated pest management. Agriculture, Ecosystems & Environment141, 32–38 (2011).
Google Scholar
Liow, L. H., Sodhi, N. S. & Elmqvist, T. Bee diversity along a disturbance gradient in tropical lowland forests of south-east Asia. Journal of Applied Ecology38, 180–192 (2001).
Google Scholar
Boutin, C., Martin, P. A. & Baril, A. Arthropod diversity as affected by agricultural management (organic and conventional farming), plant species, and landscape context. Ecoscience16, 492–501 (2009).
Google Scholar
Richards, M. et al. Bee diversity in naturalizing patches of Carolinian grasslands in southern Ontario, Canada. The Canadian Entomologist143, 279–299 (2011).
Google Scholar
Hatfield, R. & Lebuhn, G. Patch and landscape factors shape community assemblage of bumble bees, Bombus spp. (Hymenoptera: Apidae), in montane meadows. Biological Conservation139, 150–158 (2007).
Google Scholar
McFrederick, Q. S. & LeBuhn, G. Are urban parks refuges for bumble bees Bombus spp. (Hymenoptera: Apidae)? Biological Conservation129, 372–382 (2006).
Google Scholar
Shuler, R. E., Roulston, T. H. & Farris, G. E. Farming practices influence wild pollinator populations on squash and pumpkin. Journal of Economic Entomology98, 790–795 (2005).
Google Scholar
Winfree, R., Griswold, T. & Kremen, C. Effect of human disturbance on bee communities in a forested ecosystem. Conservation Biology21, 213–223 (2007).
Google Scholar
Kwaiser, K. S. & Hendrix, S. D. Diversity and abundance of bees (Hymenoptera: Apiformes) in native and ruderal grasslands of agriculturally dominated landscapes. Agriculture, Ecosystems & Environment124, 200–204 (2008).
Google Scholar
Julier, H. E. & Roulston, T. H. Wild bee abundance and pollination service in cultivated pumpkins: Farm management, nesting behavior and landscape effects. Journal of Economic Entomology102, 563–573 (2009).
Google Scholar
Tonietto, R., Fant, J., Ascher, J., Ellis, K. & Larkin, D. A comparison of bee communities of Chicago green roofs, parks and prairies. Landscape and Urban Planning103, 102–108 (2011).
Google Scholar
Vázquez, D. P. & Simberloff, D. Ecological specialization and susceptibility to disturbance: conjectures and refutations. The American naturalist159, 606–623 (2002).
Google Scholar
Quintero, C., Morales, C. L. & Aizen, M. A. Effects of anthropogenic habitat disturbance on local pollinator diversity and species turnover across a precipitation gradient. Biodiversity and Conservation19, 257–274 (2010).
Google Scholar
Schüepp, C., Rittiner, S. & Entling, M. H. High bee and wasp diversity in a heterogeneous tropical farming system compared to protected forest. PLoS ONE7, e52109 (2012).
Google Scholar
Tonhasca, A., Blackmer, J. L. & Albuquerque, G. S. Abundance and diversity of Euglossine bees in the fragmented landscape of the Brazilian Atlantic Forest. Biotropica34, 416–422 (2002).
Google Scholar
Barlow, J. et al. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proceedings of the National Academy of Sciences104, 18555–18560 (2007).
Google Scholar
Smith-Pardo, A. & Gonzalez, V. H. Diversidad de abejas (Hymenoptera: Apoidea) en estados sucesionales del bosque humedo tropical TT – Bee diversity (Hymenoptera: Apoidea) in a tropical rainforest succession. Acta Biológica Colombiana12, 43–55 (2007).
Parra-H, A. & Nates-Parra, G. Variation of the orchid bees community (Hymenoptera: Apidae) in three altered habitats of the Colombian “llano” piedmont. Revista de biologia tropical55, 931–941 (2007).
Google Scholar
Poveda, K., Martnez, E., Kersch-Becker, M. F., Bonilla, M. A. & Tscharntke, T. Landscape simplification and altitude affect biodiversity, herbivory and Andean potato yield. Journal of Applied Ecology49, 513–522 (2012).
Google Scholar
Tylianakis, J. M., Klein, A.-M. & Tscharntke, T. Spatiotemporal variation in the diversity of Hymenoptera across a tropical habitat gradient. Ecology86, 3296–3302 (2005).
Google Scholar
Fierro, M., Cruz-López, L., Sánchez, D., Villanueva-Gutiérrez, R. & Vandame, R. Effect of biotic factors on the spatial distribution of stingless bees (Hymenoptera: Apidae, Meliponini) in fragmented Neotropical habitats. Neotropical Entomology41, 95–104 (2012).
Google Scholar
Rousseau, L., Fonte, S. J., Téllez, O., van der Hoek, R. & Lavelle, P. Soil macrofauna as indicators of soil quality and land use impacts in smallholder agroecosystems of western Nicaragua. Ecological Indicators27, 71–82 (2013).
Google Scholar
Verboven, H. A. F., Brys, R. & Hermy, M. Sex in the city: Reproductive success of Digitalis purpurea in a gradient from urban to rural sites. Landscape and Urban Planning106, 158–164 (2012).
Google Scholar
Billeter, R. et al. Indicators for biodiversity in agricultural landscapes: a pan-European study. Journal of Applied Ecology45, 141–150 (2008).
Google Scholar
Diekötter, T., Billeter, R. & Crist, T. O. Effects of landscape connectivity on the spatial distribution of insect diversity in agricultural mosaic landscapes. Basic and Applied Ecology9, 298–307 (2008).
Google Scholar
Le Féon, V. et al. Intensification of agriculture, landscape composition and wild bee communities: A large scale study in four European countries. Agriculture, Ecosystems & Environment137, 143–150 (2010).
Google Scholar
Kruess, A. & Tscharntke, T. Grazing intensity and the diversity of grasshoppers, butterflies, and trap-nesting bees and wasps. Conservation Biology16, 1570–1580 (2002).
Google Scholar
Meyer, B., Gaebele, V. & Steffan-Dewenter, I. D. Patch size and landscape effects on pollinators and seed set of the Horseshoe Vetch, Hippocrepis comosa, in an agricultural landscape of Central Europe. Entomologia Generalis30, 173–185 (2007).
Google Scholar
Diekötter, T., Walther-Hellwig, K., Conradi, M., Suter, M. & Frankl, R. Effects of landscape elements on the distribution of the rare bumblebee species Bombus muscorum in an agricultural landscape. Biodiversity and Conservation15, 57–68 (2006).
Google Scholar
Meyer, B., Jauker, F. & Steffan-Dewenter, I. Contrasting resource-dependent responses of hoverfly richness and density to landscape structure. Basic and Applied Ecology10, 178–186 (2009).
Google Scholar
Jauker, B., Krauss, J., Jauker, F. & Steffan-Dewenter, I. Linking life history traits to pollinator loss in fragmented calcareous grasslands. Landscape Ecology28, 107–120 (2013).
Google Scholar
Herrmann, F., Westphal, C., Moritz, R. F. A. & Steffan-Dewenter, I. Genetic diversity and mass resources promote colony size and forager densities of a social bee (Bombus pascuorum) in agricultural landscapes. Molecular Ecology16, 1167–1178 (2007).
Google Scholar
Holzschuh, A., Dormann, C. F., Tscharntke, T. & Steffan-Dewenter, I. Expansion of mass-flowering crops leads to transient pollinator dilution and reduced wild plant pollination. Proceedings of the Royal Society B: Biological Sciences278, 3444–3451 (2011).
Google Scholar
Weiner, C. N., Werner, M., Linsenmair, K. E. & Blüthgen, N. Land use intensity in grasslands: Changes in biodiversity, species composition and specialisation in flower visitor networks. Basic and Applied Ecology12, 292–299 (2011).
Google Scholar
Nielsen, A. et al. Assessing bee species richness in two Mediterranean communities: importance of habitat type and sampling techniques. Ecological Research26, 969–983 (2011).
Google Scholar
Power, E. F. & Stout, J. C. Organic dairy farming: impacts on insect-flower interaction networks and pollination. Journal of Applied Ecology48, 561–569 (2011).
Google Scholar
Davis, E. S., Murray, T. E., Fitzpatrick, Ú., Brown, M. J. F. & Paxton, R. J. Landscape effects on extremely fragmented populations of a rare solitary bee, Colletes floralis. Molecular Ecology19, 4922–4935 (2010).
Google Scholar
Quaranta, M. et al. Wild bees in agroecosystems and semi-natural landscapes. 1997–2000 collection period in Italy. Bulletin of Insectology57, 11–61 (2004).
Yoon, H. J., Lee, K. Y., Kim, M. A. & Park, I. G. Local distribution and floral preferences of founder bumblebee queens in Korea. Journal of Apiculture27, 169–178 (2012).
Kohler, F., Verhulst, J., Van Klink, R. & Kleijn, D. At what spatial scale do high-quality habitats enhance the diversity of forbs and pollinators in intensively farmed landscapes? Journal of Applied Ecology45, 753–762 (2008).
Google Scholar
Goulson, D., Lye, G. C. & Darvill, B. Diet breadth, coexistence and rarity in bumblebees. Biodiversity and Conservation17, 3269–3288 (2008).
Google Scholar
Mudri-Stojnic, S., Andric, A., Józan, Z. & Vujic, A. Pollinator diversity (Hymenoptera and Diptera) in semi-natural habitats in Serbia during summer. Archives of Biological Sciences64, 777–786 (2012).
Google Scholar
Öckinger, E. & Smith, H. G. Semi-natural grasslands as population sources for pollinating insects in agricultural landscapes. Journal of Applied Ecology44, 50–59 (2007).
Google Scholar
Franzén, M. & Nilsson, S. G. How can we preserve and restore species richness of pollinating insects on agricultural land? Ecography31, 698–708 (2008).
Google Scholar
Samnegård, U., Persson, A. S. & Smith, H. G. Gardens benefit bees and enhance pollination in intensively managed farmland. Biological Conservation144, 2602–2606 (2011).
Google Scholar
Oertli, S., Mueller, A. & Dorn, S. Ecological and seasonal patterns in the diversity of a species-rich bee assemblage (Hymenoptera: Apoidea: Apiformes). European Journal of Entomology102, 53–63 (2005).
Google Scholar
Albrecht, M. et al. Effects of ecological compensation meadows on arthropod diversity in adjacent intensively managed grassland. Biological Conservation143, 642–649 (2010).
Google Scholar
Farwig, N. et al. Isolation from forest reduces pollination, seed predation and insect scavenging in Swiss farmland. Landscape Ecology24, 919–927 (2009).
Google Scholar
Schüepp, C., Herrmann, J. D., Herzog, F. & Schmidt-Entling, M. H. Differential effects of habitat isolation and landscape composition on wasps, bees, and their enemies. Oecologia165, 713–721 (2011).
Google Scholar
Darvill, B., Knight, M. E. & Goulson, D. Use of genetic markers to quantify bumblebee foraging range and nest density. Oikos107, 471–478 (2004).
Google Scholar
Marshall, E. J. P., West, T. M. & Kleijn, D. Impacts of an agri-environment field margin prescription on the flora and fauna of arable farmland in different landscapes. Agriculture, Ecosystems & Environment113, 36–44 (2006).
Google Scholar
Knight, M. E. et al. An interspecific comparison of foraging range and nest density of four bumblebee (Bombus) species. Molecular Ecology14, 1811–1820 (2005).
Google Scholar
Connop, S., Hill, T., Steer, J. & Shaw, P. Microsatellite analysis reveals the spatial dynamics of Bombus humilis and Bombus sylvarum . Insect Conservation and Diversity4, 212–221 (2011).
Google Scholar
Goulson, D. et al. Effects of land use at a landscape scale on bumblebee nest density and survival. Journal of Applied Ecology47, 1207–1215 (2010).
Google Scholar
Hanley, M. E. et al. Increased bumblebee abundance along the margins of a mass flowering crop: evidence for pollinator spill-over. Oikos120, 1618–1624 (2011).
Google Scholar
Blake, R. J., Westbury, D. B., Woodcock, B. A., Sutton, P. & Potts, S. G. Enhancing habitat to help the plight of the bumblebee. Pest Management Science67, 377–379 (2011).
Google Scholar
Redpath, N., Osgathorpe, L. M., Park, K. & Goulson, D. Crofting and bumblebee conservation: The impact of land management practices on bumblebee populations in northwest Scotland. Biological Conservation143, 492–500 (2010).
Google Scholar
Bates, A. J. et al. Changing bee and hoverfly pollinator assemblages along an urban-rural gradient. PLoS ONE6, e23459 (2011).
Google Scholar
Osgathorpe, L. M., Park, K. & Goulson, D. The use of off-farm habitats by foraging bumblebees in agricultural landscapes: implications for conservation management. Apidologie43, 113–127 (2012).
Google Scholar
Copyright for syndicated content belongs to the linked Source link